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FREE CO~CTION HEAT TRANSFER IN A/~ OPEN SYSTEM 

OF VERTICAL RODS 

V. I. Eliseev and Yu. P. Sovit UDC 536.25 

Investigations of free convection heat transfer on vertical surfaces are a well-devel- 
oped section of the theory of natural convection flows. Extensive handbook and bibliographic 
material on this topic can be found in [I]. However, the problems of developing effective 
heat transfer apparatus, the necessity to compute the temperature regimes of complex rod 
systems possessing heat liberation, the selection of effective methods of protecting packets 
of electrical cables from overheating determine the urgency of formulating and solving prob- 
lems on the hydrodynamics and heat transfer of different sets of rods. An effective model 
that permits reflection of the hydrodynamic and thermal interaction of rods between them- 
selves and the bundle as a whole with the environment is a filtration flow model. It is 
used extensively at this time for heat transfer computations under forced convection in an- 
isotropic rod structures [2-5]. Critical relationships obtained on the basis of processing 
experimental data are used here to determine the thermal and hydrodynamic forces of solid 
and liquid phase interaction per unit volume of a porous body. Considerably less attention 
is paid to questions of mathematical modeling of free convection heat transfer in such media. 
Existing researches are mainly experimental in nature [6-9]. Consequently, application of 
the filtration flow model in a porous medium to the description of free convection processes 
in rod bundles and execution of numerical computations of the heat transfer of rod collec- 
tions with an external cooling medium are of great interest. Meanwhile the lack of critical 
dependences for bulk friction and heat liberation in such a flow specifies the urgency of the 
problem of a theoretical determination of the desired quantities. Solution of these problems 
is indeed the purpose of this paper. 

i. FUNDAMENTAL EQUATIONS AND BOUNDARY CONDITIONS 

Let us consider the axisymmetric free convective incompressible fluid flow in a verti- 
cal bundle of rods. We assume that the flow mode is laminar and the viscosity, heat conduc- 
tor, and specific heat are independent of the temperature. We direct the x axis along the 
longitudinal axis of the bundle, then the r axis will lie in a plane perpendicular to the x 
axis while the angle ~ is measured from a certain initial position of the xor plane. Let us 
extract a small space element AV = rA~AxAr, containing a sufficiently large quantity of rods 
in addition to fluid (Fig. i). In the presence of the rods the space configuration is char- 
acterized by the quantities 

= A V f / A V ,  ~x = A S f x / A S x ,  gr ---- A S f r / A S r ,  g~ = A S f ~ / A S e ,  

where AVf is the volume of space occupied by the fluid, ASj is the area of a side of the ele- 
ment with normal along the appropriate axis, and ASfj is the area of the flow-through part 
of the appropriate side of the element. The flow field is determined by the velocity vector 
u iu + jv as well as by mass and volume force vectors acting on the extracted element. 
Taking into account the axisymmetry of the motion and using the standard procedure for de- 
riving the conservation equations for a continuous medium [i0], we have 
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Here  A c h a r a c t e r i z e s  t h e  a c t i o n  o f  t h e  vo lume  f o r c e s  t h a t  o c c u r  d u r i n g  t e m p e r a t u r e  e x p a n s i o n  
o f  t h e  f l u i d .  W i t h i n  t h e  f r amework  o f  t h e  B o u s s i n e s q  mode l  A = g(T - T , ) / T ,  ( T ,  i s  a c e r t a i n  
c h a r a c t e r i s t i c  t e m p e r a t u r e  and g i s  t h e  f r e e  f a l l  a c c e l e r a t i o n ) .  The q u a n t i t i e s  R x ,  R r ,  Q 
r e f l e c t  t h e  f o r c e  and t h e r m a l  i n t e r a c t i o n  o f  t h e  r o d s  w i t h  t h e  f l u i d  p e r  u n i t  v o l u m e ,  and 
t h e  p a r a m e t e r  G i s  mass  l i b e r a t i o n  o r  a b s o r p t i o n  w h i c h  can  o c c u r  i n  t h e  s y s t e m  b e c a u s e  o f  
c h e m i c a l  r e a c t i o n s  o r  g a s  l i b e r a t i o n  on t h e  r o d  s u r f a c e s .  The e q u a t i o n s  ( L . L )  d e s c r i b e  t h e  
d i s t r i b u t i o n s  o f  t h e  t r u e  s t r e a m  p a r a m e t e r s  a v e r a g e d  o v e r  t h e  l i q u i d  vo l um e .  I n t r o d u c t i o n  
o f  t h e  c o n c e p t  o f  t h e  f i l t r a t i o n  v e l o c i t y  Yl = eY p e r m i t s  e x t e n s i o n  o f  t h e s e  e q u a t i o n s  t o  
t h e  w h o l e  vo lume u n d e r  c o n s i d e r a t i o n .  To c o m p l e t e  t h e  f o r m u l a t i o n  t h e y  must  be s u p p l e m e n t e d  
by t h e  h e a t  t r a n s p o r t  e q u a t i o n  i n  t h e  s o l i d  p h a s e ,  p a r t i c u l a r  c a s e s  o f  which  can  be c o n d i -  
t i o n s  o f  i s o t h e r m y  T c = c o n s t  o r  h e a t  l i b e r a t i o n  qc = c o n s t  on t h e  r o d  s u r f a c e s .  

The e q u a t i o n s  o b t a i n e d  c o n t a i n  t h e  g e o m e t r i c  c h a r a c t e r i s t i c s  m, m x ,  m r o f  t h e  s p a c e  and 
t h e  dynamic  p h a s e  i n t e r a c t i o n  p a r a m e t e r s  R x ,  R r .  I n  t h e  g e n e r a l  c a s e  o f  a f l o w  i n  an a n i s o -  
t r o p i c  p o r o u s  s t r u c t u r e  m x ~ m r and R x ~ R r .  However ,  t a k i n g  i n t o  a c c o u n t  t h a t  m x = m f o r  a 
b u n d l e  o f  r o d s  o f  c o n s t a n t  r a d i u s ,  and i n t r o d u c i n g  t h e  a d d i t i o n a l  a s s u m p t i o n  t h a t  m r ~ E a l -  
s o ,  we can  s i m p l i f y  ( 1 . 1 )  a f t e r  w h i c h  i t  w i l l  a g r e e  c o m p l e t e l y  w i t h  t h e  e q u a t i o n s  i n  [ 1 1 ] .  

The following possibility of simplifying the initial equations includes utilization of 
an approximate boundary layer model [12]. Assuming the Rayleigh number for the bundle to 
be considerably larger than one and that the transverse velocities are significantly less 
than the longitudinal, we obtain the following system (the flow is stationary, p = p~, dp/ 

dx = 0, T, = T~ = const): 

~ 7 + v 1 3 7 / = / + ~ g  r ~  + ' e f ~ - j ~ 2 + V W / '  ( i . 2 )  
% 

o (r , , )  
w S  ox 

Let us note that (l.l) and (1.2) contain certain provisional parameters ~ef and lef in place 
of the physical viscosity and heat conduction of the fluid, which can be used to take account 
a different kind of inaccuracy in the averaging and the influence of solid surfaces on dissi- 
pative processes. However, as is shown in [13, 14], Def = ~ can be assumed with great accu- 
racy for filtration flows. This condition is also assumed for lef in this paper. 

A domain of moving homogeneous fluid is contiguous to the outside of the bundle. Since 
the flow is considered within the framework of the boundary layer model in the inner domain, 
then it is also completely natural to use the axisymmetric boundary layer equations in the 
other domain, which differ from (1.2) by the fact that e = i, f = q = G = 0 and the subscript 
2 is used instead of l. 

Hydrodynamic and thermal interaction exists between the two domains. It is reflected 
formally by using equality of the velocities, temperatures, stresses, and heat fluxes on the 
boundary of the viscous and filtration flow [15] 

748 



/~2(X, R b )  = ~-lUl(X , l~b) ,  Vl(X , /~b ) ---- Vi(X , Rb), 
T~(x, R b) = T2(x, Rb), ( 1 . 3 )  

Ou 2 8u I ~ OT2 cgT 1 I 
~t-~r r=Rb= ~ e f ~ -  r=Rb' ~ r  ir=Rb= %'efTr Ir=nb" 

Besides these relationships, conditions on the bundle axis and on the boundaries of the 

whole flow domain are still needed 

v 1 = O, Oul/Or : O, OTffOr = 0 for r : O, ( 1 . 4 )  

U 2 -->- 0, T2 --)- Too for r --+ oo. 

For completion of the set problem it remains to determine f and q. 

2. DETERMINATION OF THE VOLUME DRAG AND HEAT LIBERATION 
IN A BUNDLE OF RODS 

Let us use the model of a "free cell" for two-phase systems for this purpose [16, 17]. 
The cell is the domain between two coaxial cylinders for the case of a longitudinally stream- 

lined cylinder that is part of the rod assemblage. The inner cylinder is a streamlined cy- 

lindrical body with radius R c and the outer is a liquid shell of radius R A. The radius of 
the outer cylinder is taken such that the ratio between the fluid volume in the space between 
rods and the total volume of the bundle would equal the porosity, i.e., e = i - (Rc/RA) 2 
The equations describing the stabilized fluid motion and the rod heat transfer are solved 
in the model taken by using symmetry conditions on the cell outer boundary. Consequently, 
the rods in the bundle are insulated and do not interact with each other. 

Such an approach does not permit reflection of the influence of the boundary conditions 
of the whole process on the distribution of the main parameters over the bundle thickness. 
In this connection, we modify the model under consideration in such a manner as to remove 
this constraint. 

We will assume that the flow in the space between the rods is free convective, axisym- 
metric, and described in the approximations of the boundary layer and Boussinesq models by 
the equations 

u--~x+V--~'r = g  ~ 7 T F  0r) '  ( 2 . 1 )  

( OT rOT1 ~, 0 (r 8TI 
pcp u ~ + Or / = 7 ~ \ --~-r / 

with the boundary conditions 

u ~- ua, T = T a for r ~ PtA, zt = 0, T = T c or 

--).OT/Or = qe ;for 7" = R e ( 2 . 2 )  

(U A, T A a r e  c e r t a i n  p r o v i s i o n a l  q u a n t i t i e s  t h a t  s h o u l d  be d e f i n e d  in  t e rms  o f  t h e  s t r e a m  f i l -  
t r a t i o n  parameters). In such a representation the cells comprising the bundle are already 
not insulated and are connected with the bundle parameters and the external boundary layer 
by means of the functional dependences U h = Fu(ul, Tz) , T A = FT(Ul, TI). We use successive 
approximations [18] to solve (2.1), where the solution is represented in the form u = u0(x , 

r) + u1(x , r) + ... and the function u 0 satisfies the simplified equation that can be ob- 
tained from (2.1) by omitting the convective components, i.e., 

Or \ --if-r/ + g  ~ - - 1  = 0 ,  ~. 0 r 8r~ r r ~ r  ~ r J  = 0 ( 2 . 3 )  

(we l a t e r  omi t  t h e  s u b s c r i p t  0 s i n c e  we s h a l l  u s e  o n l y  t h e  z e r o t h  a p p r o x i m a t i o n ) .  

We t a k e  ( 2 . 2 )  as  b o u n d a r y  c o n d i t i o n s  f o r  ( 2 . 3 ) .  F o r m u l a t i o n  o f  t h i s  p rob lem and c e r -  
t a i n  c o m p u t a t i o n  r e s u l t s  a r e  p r e s e n t e d  in  [19]  f o r  a b u n d l e  o f  i s o t h e r m a l  r o d s .  

The expressions 
T = Ta Jr Tq(ln RA/P% - -  In r/Rc), 

u = Ua In ,~ , /~ '~  + Gr* ~ -  (r: - -  B~) In r /Rc + 
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+ l n R A / R c + l +  Tq ' ( R i e +  - - r  e ) (2.4) 

[Tq is the characteristic temperature of the rod, Tq = qcRc/l, Gr* is a modified Grashof 
nunlber Gr* = gRbSTq(V2T~)] are the solution of the system (2.3) with the boundary condi- 
tions qc = const. -By having the distributions of u and T in the cell the friction and heat 
flux on the rod can be determined and related to the desired f and q: 

2.URc Ou 1 2~Rc OT r=Rc" 
I =  q= (2.5) 

Using (2.4) in ( 2 . 5 ) ,  we obtain 

2vU A Tq [ ( 
/ --  R2~ in R~/R c + g - ~  (e - -  1 + az) In RA/Rc + 

+ ~ / + a s - - t + ~ / 2  , 

q = 2)~Tq/R~ (as = e/(2 In R~/Rc)). 

( 2 . 6 )  

Let us now make the following assumption. We consider the filtration velocity equal to the 
mean mass flow rate in the cell under consideration, and the filtration temperature to be 
the mean calorimetric value of the flux passing the space between the rods 

R A RA 

ul = 2n .f urdr / (nR~) ,  T1 = 2n j uTrdr / (nR~u l ) .  ( 2 . 7 )  
R e Rc 

A f t e r  s u b s t i t u t i n g  ( 2 . 6 )  i n t o  ( 2 . 7 )  and a p p r o p r i a t e  m a n i p u l a t i o n s ,  we f i n d  t h e  r e l a t i o n  b e -  
tween  U 5, T A, and u l ,  Tz:  

UA = i U q  -~ BUq(T~x/Tq), Ta = (ulT1 - -  UqTq)/AA, (2.8) 

where  AUq = ul + Gr* (V/Rb) [(ln RA/R c -- Tor q + l) b 1 -~- b2] " 
l - -  a z 

bl . [ bibs /RA'~ 21nRA/Rc ] 

U q  = u 1 In RA/R e - -  AUqba - -  Gr* (V/Rb)(Ra/Rb)'(ln RA/Rc)/8 X 

X [ b  5 q- (l q- In R~/R  c - -  T~/Tq)b4]. 

The set of constants bl, ..., b s is determined only by the bundle geometry: bl = (R~/RN) 2• 
e(as + d2  - -  t ) ~ ,  b2 = (R• 2 In RA/Rc(I - -  a s -  ea/2) /8 ,  b~ = In RA/R e - -  t + a~, b 4 = 4asb z + (l,5e - -  t) • 
a s - 2 e + i ,  b 5  = i , 5 ( t - - a s ) - - l n R ~ / R  c - e a / 4 .  

C o n s e q u e n t l y ,  t h e  c o n j u g a t e  p r o b l e m  o f  f r e e  c o n v e c t i v e  h e a t  t r a n s f e r  o f  an open b u n d l e  
o f  v e r t i c a l  r o d s  c o n s i s t i n g  o f  t h e  f i l t r a t i o n  f l o w  e q u a t i o n s  in  t h e  b u n d l e  ( 1 . 2 ) ,  t h e  e x t e r -  
n a l  b o u n d a r y  l a y e r  e q u a t i o n s  ( f  = q = 0,  E = 0 ) ,  and t h e  b o u n d a r y  c o n d i t i o n s  ( 1 . 4 )  has  been  
f o r m u l a t e d .  A d d i t i o n a l  d e p e n d e n c e s  f o r  t h e  f r i c t i o n  and t h e  vo lume  h e a t  l i b e r a t i o n  in  a 
b u n d l e  o f  h e a t  l i b e r a t i n g  r o d s  a r e  g i v e n  by t h e  r e l a t i o n s h i p s  ( 2 . 6 )  and ( 2 . 8 ) .  

3. RESULTS OF COMPUTATIONS, COMPARISON WITH EXPERIMENT 

We apply the numerical method described in [20] to solve the formulated problem. 

One of the few papers containing an exposition of the theoretical and experimental in- 
vestigations of the heat transfer of a bundle of heat liberating rods is [8]. The mathemat- 
ical description of the process therein is carried out by using the cell model with boundary 
conditions of the free surface type, which excludes the influence of the external medium on 
the heat transfer in the bundle. Conditions at the center will naturally be closest to these 
conditions for an axisymmetric bundle interacting with the external medium. Consequently, we 
select rod parameters at the center of the bundle for comparison of the results. The tri- 
angular stacking scheme in [8] consisting of 42 rods of radius 0.0079 m determined the depen- 
dence between the porosity and the relative spacing 
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s = J - -  a / (2  ] / r 3 ) ( D t b ) z  ( 3 . 1 )  

[b  i s  t h e  d i s t a n c e  b e t w e e n  c e n t e r s ,  D i s  t h e  r o d  d i a m e t e r ,  R b = R c ( / 2 / 3 N / ~ ) ( b / D  ) (N i s  t h e  
q u a n t i t y  o f  r o d s  i n  t h e  b u n d l e ) ] .  

The thermophysical parameters of the medium corresponded to the parameters for air p = 
1.21 kg/m 3, Cp = 1005 J/(kg'K), v = 0.15-10 -4 m2/sec, Pr = 0.7, T~ = 20~ In the computa- 
tions b/D = 1.4-2.2 and qc = 125-500 W/m 2 were varied and this corresponds to the range of 
variations of the governing parameters in [8]. 

By using (2.4) the value of the local Nusselt number for a rod in the cell is 

NUc ~ ~D 2 2 
T c - -  T 1 T A ~ In R ~ / B  c - -  T 1 

(~ is the heat elimination coefficient and T c is the rod surface temperature). 

The values of Nu c at the center of the bundle, obtained by the method proposed, and 
compared in Fig. 2 with theoretical (dash-dot) and experimental (triangles) results [8]. 
The good agreement between the distributions found and the available experimental data for 
b/D = 1.68 and 2.03 should be noted, which permits making a deduction about the adequacy of 
the proposed heat transfer model and the computation methodology. 

As computations show, the influence of the external medium is felt in a zone of small 
thickness on the bundle surface. Elevation of the heat transfer intensity here is due to 
the formation of a section of external cold gas ejection because of the flow development 
in the volume of the bundle. This results in an increase in Nu c and a reduction of the rod 
temperature on the surface as compared with the center. Distributions of Nu c on the surface 
(w) and at the center (s) of bundles with heat flux qc = 125 W/m 2 on each rod are represent- 
ed in Fig. 3. The relative spacing is b/D = 1.68 (solid curves) and 2.03 (dashes). 

Rod temperature distributions T c for the modifications considered are displayed in Fig. 
4 (the provisional notation agrees with the notation in Fig. 3). A further increase in qc 
(or Gr*) results in substantial magnification of the ejection. The transverse flow veloci- 
ties in the outer boundary layer and on the bundle surface can here reach values commensurate 
with the longitudinal velocities. Application of the boundary layer model for the filtration 
flow in the bulk of the rod bundle becomes without foundation in such regimes. It is then 
necessary to go over to solving the problem in the complete formulation with the dynamic and 
thermal phase interaction taken into account during transverse flow around the rods. 

Free-convection flow in a bundle of isothermal rods was also examined in this paper. 
As follows from [19], in this case 

•u  c ~ 2 T c -- T •  
Tc_T1 InRx/R~, (3.2) 

while the equivalent Gr* of the modified Grashof number is Gr = gRb3(Tc - T~)/(v2T~). As 
computations showed, the Nuc(X) distributions for bundles of heat liberating and isothermal 
rods with identical geometric characteristics are practically in agreement if the condition 
Gr = Gr* is satisfied. A change in the heat liberation intensity or the initial tempera- 
ture, which is identical to the change in the numbers Gr* or Gr, is not felt in the rod heat 
transfer in the central part of the bundle in practice. This confirms the deduction in [8] 
that the density of their stacking exerts governing influence on the rod heat transfer inten- 
sity. Let us analyze this fact in an example of an isothermal bundle. 
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Let us consider the rod heat transfer in a cell for the limit case when thermal stabil- 
ization sets in the central domain of the bundle. Let us take the following stabilization 
condition T c - T I ~ 10 -2 T c. The Nu c for this flow is calculated from (3.2) while the equa- 
tion determining TA is presented in [19]. The solution of the equation is written as 

where 

T~ - -  r c = ( - - B T  + B T  ] / 1  - -  I3) / (2AT),  

Gr [ c4!~+__ce)]. 
A T  = ( ~ / R b )  ( r  e _ T:r In RA/R e e3 + c5 "1- t - -  a s ] '  

~i  - -  (V/Rb) Gr q ; 
B T  ---- A U c  4 - -  ( V / R b )  G r  c~; A U  ---- t - -  % 

c~ --- - - b l ;  c2 = - - b ~ ;  c 3 = ( R A / R b ) ' [ I n  RA/RB -F t , 5 ( a 8  - -  t )  + ea /41 /8 ;  

13 = 4 A T u ~ ( T o  - -  T 1 ) / B T ~ ;  c 4 = [ l n  R A / R  c - -  t -F  a ~ l / I n  R ~ / R c ;  

c 5 -= ( R a / R b ) 2 [ ( t  - -  a~) (2s  - -  t )  + s a / 2  - -  2ec41/8. 

(3.3) 

The thermal stabilization is ~ ~ i0 -2 under 
izing (3.3) with respect to ~ and appropriate manipulations we have 

T a - - T c  = u l ( r c -  r l )  
uica/(l - -  as) + (V/Rb) Gr c o " 

T h e n  t a k i n g  ( 3 . 4 )  i n t o  a c c o u n t  

t 9 
N u c  l nR~ /B  c c ~ ( l - - a ~ ) + ~ / B b ) G r c o / U l  

the condition taken. Consequently, by linear- 

(3.4) 

(3.5) 

(c o = bzcm/(l - ae) - cs, uz/(v /R b) is the dimensionless filtration flow velocity in the 

bundle). 

As is seen, the second component in the denominator of (3.5) takes account of the con- 
tribution of the flow dynamic parameters to the rod heat transfer. Analysis shows that the 
constant c o depends only on b/D or e as varies between tile limits (-0.0018 to -0.0032)(RA/ 
Rb )2 as b/D changes from 1.2 to 2.2. If it is assumed that the beam consists of i00 rods, 
say, then for Gr = 105 the second component is equivalent to B(~/Rb)/U I, where B ~ I. 

Therefore, the influence of the stream dynamic parameters on Nu c in the cell decreases 
in proportion to i/uz, i.e., flux transformation from free convective to forced occurs dur- 
ing the flow development, which corresponds to flow around and heat transfer to a rod in a 
channel with axial parameters U A, T A. Omitting the dynamic component in (3.5), the lower 
limit value of Nuc* is written in the form 

�9 -- 2 [ l n ( l  -- e ) ~ - e ]  (3.6) 

NUc = l n ( l - - e ) [ 0 , 5 1 n ( l - - e ) + l ]  ~ s  

[the porosity e is calculated from (3.1)]. The distribution Nuce(e) found is represented 
by dashed lines in Fig. 2. The maximal deviation of the values of Nuc* from the numerical 
results obtained by the method described above does not exceed 11%. This permits the recom- 
mendation of the approximate dependence (3.6) as the lower bound of the heat transfer inten- 
sity during development of the free convection in a rod bundle. 
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Attention was turned in [19] to the existence of two characteristic free convection 
flow modes in the outer boundary layer on a bundle of isothermal rods. The first is realized 
in the section from the beginning of filtration flow formation to the onset of thermal equi- 
librium between the gas and the rods in the bundle. The flow in the outer domain is here 
analogous to forced flow with suction on an accelerating cylinder of radius R b. For this 
flow c x < 0 (c x = i/(pu02)~(Su/Sr)Ir=Rc, andu 0 is the initial velocity in the bundle). A 
second flow mode is developed in the external flow after thermal equilibrium has been 
achieved in the bundle. The velocity profile in the boundary layer acquires a characteris- 
tic form for free convective flow with c x > 0. The condition c x = 0 is a criterion for the 
passage from one flow mode to the other. 

The distributions Cx(X) for bundles of isothermal rods are represented in Fig. 5 (solid 
lines). It is assumed that a bundle of radius 0.02 m consists of a set of rods of radius 
0.00025 m heated to a temperature T c = 200~ The temperature of the external medium is T~ = 
20~ and the Prandtl number is Pr = 0.7. The curves 1 correspond to a bundle of i00 rods 
(N = i00) while N = 50 for the curves 2. It can be seen that an increase in the stacking 
density of the bundle results in diminution of the section with the first flow mode. Dis- 
tributions c x are given here for bundles of heat liberating rods (dashed lines). The condi- 
tion Gr = Gr* is satisfied here. For the heat transfer modifications considered c x < 0 in 
the whole computation interval, i.e., the second flow mode in the boundary layer does not 
develop in such a bundle, which can be explained by the absence of the limit value of the 
rod temperature for a bundle with heat liberation unlimited along the length. 
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MODIFICATION OF THE METHOD OF DISCRETE CONTINUATION 

BY PARAMETERS 

E. I. Grigolyuk and E. A. Lopanitsyn UDC 539.3 

We consider a system of nonlinear equations 

F~(xl ,  x2 . . . .  , x~ ,  p )  = 0 (~ = 1, n) ,  ( 1 )  

where  x i ( i  = 1, n)  a r e  a rgumen t s  and p i s  t h e  s o l u t i o n  p a r a m e t e r .  N o n l i n e a r  p rob lems  o f  
m e c h a n i c s  can o f t e n  be r e d u c e d  t o  s y s t e m s  o f  t h i s  k i n d .  One such  e l e m e n t a r y  p rob lem i s  t h e  
p rob lem o f  a x i s y m m e t r i c  b u c k l i n g  o f  an i s o t r o p i c  c i r c u l a r  p l a t e  a c t e d  upon by r a d i a l  f o r c e s  
N o d i s t r i b u t e d  u n i f o r m l y  on t h e  c o n t o u r  and by a t r a n s v e r s e  l o a d  q: 

r-yfr -'s (r2Nr) + - ~ -  -$fr = 0, 

(2) 
r dr r W --dFr r ~r IJJ r dr r3~  --Ji-r = 9 (0 <~ r <~ R), 

dw/dr = Qr = ur = 0 for r = 0, w = M r = 0, Nr  = - - N o  for: r = R. 

Here ,  u r and w a r e  t h e  r a d i a l  d i s p l a c e m e n t  and t h e  d e f l e c t i o n ;  Nr,  Mr, and Qr a r e  t h e  s p e c i -  
f i c  r a d i a l  f o r c e ,  t h e  b e n d i n g  moment, and t h e  s h e a r i n g  f o r c e ;  E and D a r e  Y o u n g ' s  modulus 
and t h e  c y l i n d r i c a l  r i g i d i t y  o f  t h e  p l a t e ;  R and h a r e  t h e  p l a t e ' s  r a d i u s  and t h i c k n e s s ,  
r e s p e c t i v e l y .  

We p r o p o s e  t o  c o n s t r u c t  t h e  l o a d i n g  t r a j e c t o r y  o f  a m e c h a n i c a l  o b j e c t  whose b e h a v i o r  
i s  d e s c r i b e d  by s y s t e m  ( 1 ) :  

z~ = x~(p) (~ = i ,  n).  

The method of continuous parameter continuation is convenient for solving this problem. 
With this method one constructs the loading trajectory at all points that are regular in 
the Poincare sense, including the limiting points of the trajectory. The idea of this meth- 
od was first advanced in [i]. Its detailed elaboration, which considers the equivalence of 
solution variables, was given in [2]. However, this method has a shortcoming: In the course 
of numeric construction of the loading trajectory, an uneliminable error accumulates in the 
solution. After several steps in the continuous continuation method, one has to adjust its 
solution. This adjustment is done by an algorithm that relies on the techniques of the 
method of discrete continuation in the parameter, which also implements the concept of equiv- 
alence of parameters [2]. On this basis, one can adjust the solution at regular and limit- 
ing points of the trajectory. Without reviewing the various methods of continuous and dis- 
crete continuation (such a review can be found in [2, pp. 12-23, 176-196]), we will examine 
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